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On the Eigenvalue Spacing Distribution
for a Point Scatterer on the Flat Torus

Zeév Rudnick and Henrik Ueberschär

Abstract. We study the level spacing distribution for the spectrum of a
point scatterer on a flat torus. In the two-dimensional case, we show that
in the weak coupling regime, the eigenvalue spacing distribution coin-
cides with that of the spectrum of the Laplacian (ignoring multiplicities),
by showing that the perturbed eigenvalues generically clump with the
unperturbed ones on the scale of the mean level spacing. We also study
the three dimensional case, where the situation is very different.

1. Introduction

1.1. The S̆eba Billiard

Point scatterers are toy models used to understand aspects of quantum systems
for which the corresponding classical limit is intermediate between integrable
and chaotic. In this paper, we study the spectral statistics of point scatterers
on the flat torus (a “S̆eba billiard”) in the “weak coupling” regime.

A point scatterer on the torus is formally given by a Hamiltonian

− Δ + αδx0 , α ∈ R (1.1)

where Δ is the Laplacian, α denotes a coupling constant and x0 denotes the
position of the scatterer. Mathematically, a point scatterer is realised as a self-
adjoint extension of the Laplacian −Δ acting on functions which vanish near
x0 (see [3]). Such extensions are parameterized by a phase ϕ ∈ (−π, π], where
ϕ = π corresponds to the standard Laplacian (α = 0 in (1.1)). We denote the
corresponding operator by −Δx0,ϕ. For ϕ = π, the eigenvalues are those of
the standard Laplacian. For ϕ �= π(α �= 0), the resulting spectral problem still
has the eigenvalues of the unperturbed problem, with multiplicity decreased
by one, as well as a new set of Λϕ = {λϕj } of eigenvalues interlaced between
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the sequence of unperturbed eigenvalues, each appearing with multiplicity one,
and satisfying the spectral equation

∞∑

j=0

|ψj(x0)|2
(

1
λj − λ

− λj
λ2
j + 1

)
= c0 tan

ϕ

2
(1.2)

wherec0 =
∑∞
j=0

|ψj(x0)|2
λ2

j+1
and {ψj} form an orthonormal basis of eigenfunc-

tions for the unperturbed problem: −Δψj = λjψj . The eigenfunction corre-
sponding to λ ∈ Λϕ is the Green’s function Gλ(x, x0) = (Δ + λ)−1δx0 .

We denote the unperturbed eigenvalues without multiplicities by

N = {n0 = 0 < n1 < · · · < nj < . . . }
and call them the “norms” of the torus. Note that the perturbed eigenvalues
defined by (1.2) are independent of the location x0 of the scatterer, since in
the case of the torus, the sums

∑
λj=n

|ψj(x0)|2 = #{λj = n} are independent
of x0.

1.2. Spacing Distributions

The perturbed eigenvalues {λϕj } interlace with the norms {nj} as follows

λϕ0 < 0 = n0 < λϕ1 < n1 < · · · < λϕk < nk < · · · (1.3)

The nearest neighbour spacings for the norms and for the perturbed eigen-
values are defined by

δj := nj+1 − nj , δϕj := λϕj+1 − λϕj (1.4)

The mean spacing between the norms is defined by

〈δj〉x :=
1

N(x)

∑

nj≤x
δj ∼ x

N(x)
, x → ∞ (1.5)

where

N(x) := #{j : nj ≤ x} (1.6)

and likewise for the mean spacing
〈
δϕj

〉
x

between the new eigenvalues. Clearly
〈
δϕj

〉
x

∼ 〈δj〉x , x → ∞ (1.7)

We define normalised nearest neighbour spacings by

δ̂j :=
δj

〈δj〉x
, δ̂ϕj :=

δϕj〈
δϕj

〉
x

(1.8)

We want to determine the distribution of the normalised spacings δϕj .
Shigehara et al. [9,10,12] identify two regimes in the semiclassical limit

for a point scatterer in dimension 2: In the weak coupling regime, the phase
ϕ is fixed as λ → ∞. In this regime, the authors predict a Poissonian level
spacing distribution for the perturbed spectrum. The strong coupling regime
is when ϕ varies as λ → ∞ so as to satisfy: c0 tan ϕ

2 ∼ − 1
4π log λ. where they

predict level repulsion. In most numerical studies of this problem, it is the
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second regime that appears, due to a truncation procedure [8]. For an analytic
study of this regime, see [2,6,13].

We deal with the spectrum of a point scatterer in the weak coupling
regime (ϕ fixed). We will show that the level spacing distributions of the norms
and of the perturbed spectrum (if either exists) coincide. Since it is generally
believed that the spacing distribution of the norms is Poissonian (if the torus
is either rational, such as the standard torus R

2/Z2, or generic irrational in
a suitable sense [4]), that would imply that the perturbed spectrum is also
Poissonian.

1.3. Our Results

We denote the differences between the old and new eigenvalues by

dj := nj − λϕj > 0 (1.9)

Since δj − δϕj = dj+1 − dj , the normalised nearest neighbour spacings between
the norms and the perturbed spectrum are related by

δ̂j − δ̂ϕj ∼ dj+1 − dj
〈δj〉x

(1.10)

We define the mean difference of dj by

〈dj〉x =
1

N(x)

∑

λϕ
j ≤x

dj . (1.11)

We will show that the ratio between the mean difference dj and the mean
spacing δj vanishes:

Theorem 1.1. For a point scatterer on a two-dimensional flat torus,
〈dj〉x
〈δj〉x

→ 0, as x → ∞. (1.12)

As a consequence, since the differences dj ≥ 0 are non-negative, we
deduce

Corollary 1.2. Outside of a zero-density subsequence,
dj

〈δj〉 → 0, as j → ∞ . (1.13)

That is the norms and the perturbed eigenvalues clump together generi-
cally1 on the scale of the mean spacing. Therefore,

Corollary 1.3. If the spacings δj for the norms have a limiting distribution,
then so do the spacings δϕj for the perturbed spectrum and the limiting distri-
butions coincide.

A similar result holds for hyperbolic surfaces if the point scatterer is
placed in a generic position. We will not give the details here.

1 Recently Tudorovskiy et al. [14] presented a heuristic argument that in the fixed regime the
spacing distribution should be Poissonian by claiming the bound (1.13) holds individually,
for all j. We are unable to verify this.
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1.4. Dimension 3
The situation is very different for a three-dimensional torus T

3. Let ηϕj be the
perturbed eigenvalues of the point scatterer and ηj the unperturbed eigen-
values counted without multiplicity (the norms). The ordering is

ηϕ0 < 0 = η0 < ηϕ1 < η1 < · · · < ηϕj < ηj (1.14)

As before we let dj := ηj − ηϕj and δj = ηj+1 − ηj . We denote by 〈dj〉x
the average of the spacings dj , and by 〈δj〉x of the spacings of the norms, for
ηϕj ≤ x.

Theorem 1.4. For the three-dimensional flat torus, we have

lim
x→∞

〈dj〉x
〈δj〉x

=
1
2
. (1.15)

Note that Theorem 1.4 does not give any information on the relation
between level spacing distributions for the norms and for the perturbed spec-
trum. For an empirical study of the spectral statistics in dimension 3, see [11].

2. Overview of the Proof

2.1. Our Method

We derive Theorems 1.1 and 1.4 from the asymptotics as β → 0 of the sum
∞∑

j=0

dje−βλϕ
j

To so, we approximate the sum by the difference
∞∑

j=0

{e−βλϕ
j − e−βnj }

of the heat traces of the operators −Δx0,ϕ and −Δ, which we study in Sect. 5
by using a trace formula which will be developed in Sect. 3, 4 in the two-
dimensional case. The three-dimensional case is treated in Sect. 6.

2.2. A Trace Formula for the Point Scatterer on the Torus

We work with a rectangular two-dimensional flat torus T
2 = R

2/2πL0, where
L0 = Z(1/a, 0) ⊕ Z(0, a) for some a > 0. Denote by L the dual lattice of L0.
The eigenvalues of the Laplacian on T

2 are the norms of the vectors of the
dual lattice L (cf. section 2 in [7]). We denote the set of norms of the dual
lattice vectors by

N = {0 < n1 < · · · } (2.1)

and the multiplicity of an eigenvalue n ∈ N is denoted by

rL(n) = #{ξ ∈ L : |ξ|2 = n}. (2.2)
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Recall that the perturbed eigenvalues {λϕj } interlace with the norms {nj}.
The ordering is

λϕ0 < 0 = n0 < λϕ1 < n1 < · · · < λϕj < nj . (2.3)

(That λϕ0 < 0 is given in [1]).
We denote nj = ρ2

j , where ρj > 0 for j ≥ 1, and λϕj = (ρϕj )2, where
ρϕj > 0 if j ≥ 1 and �ρϕ0 > 0 (note that λϕ0 < 0 and ρϕ0 is pure imaginary).
The spectral function

Sϕ(ρ) = − 1
ρ2

+
∞∑

j=1

r(nj)

{
1

nj − ρ2
− nj
n2
j + 1

}
− c0 tan

ϕ

2
(2.4)

has simple poles at the points ρ = ±ρj and zeroes at the points ρ = ±ρϕj . For
σ large enough and �ρ = −σ, we will show that

Sϕ(ρ) = − 1
2π

log(iρ) +
1
2π
D(ρ) + c(ϕ) (2.5)

for c(ϕ) = c1 − c0 tan ϕ
2 , where c1 is some real constant, and |D(ρ)| σ 1.

Let h be an even function which is analytic in a strip |�ρ| ≤ σ′ for some
σ′ > σ and satisfies

|h(ρ)|  (1 + |�ρ|)−5−δ

for some δ > 0 uniformly in the same strip. We have the following general
trace formula which we prove in Sects. 3 and 4.

Let σ > σ0(ϕ) be sufficiently large. Then for all h as above, we have

∞∑

j=0

{h(ρϕj ) − h(ρj)} =
1

2πi

−iσ+∞∫

−iσ−∞

h(ρ)dρ
ρ(log iρ− 2πc(ϕ))

− 1
2πi

−iσ+∞∫

−iσ−∞
h′(ρ) log

(
1 − D(ρ)

log iρ− 2πc(ϕ)

)
dρ.

(2.6)

2.3. A Tauberian Theorem

To prove Theorem 1.1, we will employ a Tauberian Theorem and reduce the
problem to studying the asymptotics as β ↘ 0 of

Ã(β) =
∑

j

dje−βλϕ
j (2.7)

To study Ã(β), we prove the following approximation (cf. (5.1) and Lemma
5.1)

∞∑

j=0

dje−βλϕ
j =

1
β

∞∑

j=0

{e−βλϕ
j − e−βnj } +O(β−1/2). (2.8)
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We then use the trace formula (2.6) with h(ρ) = e−βρ2 to bound
∑∞
j=0{e−βλϕ

j

−e−βnj } and obtain the following estimate which is the key result in the proof
of Theorem 1.1:

Proposition 2.1. As β ↘ 0,

Ã(β) =
∑

j

dje−βλϕ
j  1

β log 1
β

. (2.9)

2.4. Proof of Theorem 1.1

We will use Karamata’s Tauberian Theorem (see e.g. [5]) which deals with
the following situation: We say a positive function L(x) is slowly varying if
L(kt) ∼ L(t) as t → ∞ for each fixed k > 0. We are given a non-decreasing
function A(t) on R+ such that the Laplace transform

Ã(β) :=

∞∫

0

e−βtdA(t) (2.10)

converges for all β > 0. Suppose there exists two real numbers c ≥ 0, ω > 0
and a slowly varying function L(x) so that

Ã(β) = {c+ o(1)}β−ωL(1/β), β ↘ 0 (2.11)

Then

A(x) = {c+ o(1)} xωL(x)
Γ(ω + 1)

, x → ∞ (2.12)

We apply Karamata’s Tauberian theorem to the function

A(x) :=
∑

λj≤x
dj (2.13)

which is non-decreasing since dj ≥ 0. The Laplace transform Ã is

Ã(β) =
∑

j

dje−βλϕ
j . (2.14)

Proposition 2.1 implies that Ã(β) = o(1/(β
√

log 1
β )). Thus in Karamata’s

theorem, we may take ω = 1, L(t) = 1/
√

log t, and c = 0 to find

A(x) = o

(
x√
log x

)
, x → ∞. (2.15)

Therefore,

〈dj〉x
〈δj〉x

=
A(x)
N(x)

N(x)
x

=
A(x)
x

= o

(
1√

log x

)
(2.16)

as x → ∞, proving Theorem 1.1.
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2.5. Three-Dimensional Tori

As in the two-dimensional case, Theorem 1.4 follows from the following prop-
osition which we prove in Sect. 6.

Proposition 2.2. We have as β ↘ 0
∞∑

j=0

dje−βηϕ
j =

1
2β

+O(β−3/4). (2.17)

The key tools in the derivation are a trace formula (cf. Theorem 6.3) and
an approximation lemma (cf. Lemma 6.5).

3. The Trace Formula

We follow the same path as in [15] for a compact quotient Γ\H.

3.1. Overview of the Proof

Let T > 0 be such that T /∈ {ρj} ∪ {ρϕj }, σ > �ρϕ0 and consider the box

B(σ, T ) = {ρ | |�ρ| ≤ σ, |�ρ| ≤ T}.
For σ large enough and �ρ = −σ, we will show that the spectral function

(2.4) can be written as

Sϕ(ρ) = − 1
2π

log(iρ) +
1
2π
D(ρ) + c(ϕ) (3.1)

for c(ϕ) = c1 − c0 tan ϕ
2 , where c1 is some real constant, and |D(ρ)| σ 1.

Let h be an even function which is analytic in a strip |�ρ| ≤ σ′ for some
σ′ > σ and satisfies

|h(ρ)|  (1 + |�ρ|)−5−δ

for some δ > 0 uniformly in the same strip. A contour integration gives

2
∑

ρϕ
j ∈B(σ,T )

h(ρϕj ) − 2
∑

ρj∈B(σ,T )

h(ρj) =
1

2πi

∫

∂B(σ,T )+

h(ρ)
S′
ϕ

Sϕ
(ρ)dρ (3.2)

We may rewrite (3.2) as

2h(ρϕ0 ) − 2h(0) + 2
∑

0<ρϕ
j <T

h(ρϕj ) − 2
∑

0<ρj<T

h(ρj)

=
1
πi

−iσ+T∫

−iσ−T

h(ρ)dρ
ρ(log iρ− 2πc(ϕ))

− 1
πi

−iσ+T∫

−iσ−T
h′(ρ) log

(
1 − D(ρ)

log iρ− 2πc(ϕ)

)
dρ+ ∂B(T ) (3.3)
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where

∂B(T ) =
1
πi

[
h(r) log

(
Sϕ(r)

log(ir) − 2πc(ϕ)

)]−iσ+T

−iσ−T

+
1
πi

iσ+T∫

−iσ+T

h(ρ)
S′
ϕ

Sϕ
(ρ)dρ. (3.4)

Choose a sequence {Tn} away from {ρj} ∪ {ρϕj } such that limn Tn = ∞.
By use of the asymptotics (3.1), we show that the integral over the con-
tour [−iσ − Tn,−iσ + Tn] converges absolutely as n → ∞. Since Weyl’s law
implies that both traces converge absolutely, it follows that limn ∂B(Tn) exists.
The main step in the proof of the trace formula is to show that actually
limn ∂B(Tn) = 0 for a suitable choice of a sequence {Tn}.

In Lemma 4.1, we construct a sequence {Tn} which satisfies

|Sϕ(Tn + iw)| ε T
4+ε
n .

We then use this bound together with our knowledge of the existence of
limn ∂B(Tn), which holds in particular for a certain test function h5 with
suitable symmetry properties (cf. Lemma 4.2). We exploit the properties of
this particular test function to bound log |Sϕ| on average on the segments
[−iσ + Tn, Tn], namely (cf. Lemma 4.3)

∣∣∣∣∣∣

Tn∫

−iσ+Tn

log |Sϕ(ρ)|dρ
∣∣∣∣∣∣
 T 5

n . (3.5)

which allows us to pass to the limit Tn → ∞ and obtain the trace formula (2.6).

Remark. We are unable to obtain an individual bound on log |Sϕ(ρ)| on the
segments [−iσ + Tn, Tn], but a bound on average suffices for our purposes.

3.2. The Green’s Function on the Torus

The free Green’s function on R
2 is given by

gλ(x, x0) =
1
2π
K0(iρ|x− x0|), λ = ρ2, (3.6)

where K0 denotes the zeroth Bessel function.
From the integral representation

K0(r) =

∞∫

0

exp(−r cosh t)dt w=cosh t=

∞∫

1

e−wrdw√
w2 − 1

, �r > 0 (3.7)

we obtain the following integral representation for the free Green’s function
on R

2

gλ(x, x0) =
1
2π

∞∫

1

e−iwρ|x−x0|dw√
w2 − 1

, λ = ρ2, �ρ < 0. (3.8)
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We derive an integral representation for the Green’s function on the torus T
2

by the method of images. Let �ρ < 0. We have

Gλ(x, x0) =
∑

n∈L
gλ(x+ n, x0) =

1
2π

∞∫

1

kρ(w;x, x0)dw√
w2 − 1

(3.9)

where

kρ(w;x, x0) =
∑

n∈L
e−iwρ|x−x0+n|. (3.10)

Absolute convergence follows from the inequality (note w ≥ 1)

|kρ(w;x, x0)| ≤
∑

n∈L
e−σw|x−x0+n|  1 +

∑

0 �=m∈N
rL(m)e−σ√

m (3.11)

The Bessel function has the asymptotics

K0(z) = − log(z/2) − γ + o(1), z → 0 (3.12)

where γ denotes Euler’s constant. Therefore, the free Green’s function has the
asymptotics

gλ(x, x0) = − 1
2π

log(iρ|x− x0|/2) − γ

2π
+ o(1) (3.13)

as x → x0. Thus, we have the following asymptotics for the Green’s function
on the torus

Gλ(x, x0) = − 1
2π

log(iρ|x− x0|/2) − γ

2π
+ Cλ + o(1) (3.14)

as x → x0, where

Cλ =
∑

n∈L\{0}
gλ(x0 + n, x0).

3.3.

In view of the spectral expansion of the Green’s function Gλ, the spectral
function may be written as

Sϕ(ρ) = lim
x→x0

{Gλ(x, x0) − �Gi(x, x0)} − c0 tan
ϕ

2
(3.15)

where

c0 = 1 +
∑

0 �=n∈N

rL(n)
n2 + 1

.

We may rewrite (3.15) as

Sϕ(ρ) = − 1
2π

log iρ+
1
2π

D(ρ) + c(ϕ) (3.16)
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where

k(x) =
∑

n∈L\{0}
e−ix|n| =

∑

0 �=m∈N
rL(m)e−ix

√
m (3.17)

D(ρ) =

∞∫

1

k(ρw)dw√
w2 − 1

. (3.18)

and

c(ϕ) = − 1
2π

�D(−eiπ/4) − c0 tan
ϕ

2
(3.19)

is a real constant.
We have the expression

c(ϕ) = c1 − c0 tan
ϕ

2
(3.20)

where

c1 = − 1
2π

∑

m∈N
rL(m)

∞∫

1

cos(
√

m
2 w)e−

√
m
2 wdw√

w2 − 1
. (3.21)

Lemma 3.1. For sufficiently large σ > 0 and �ρ = −σ
|D(ρ)|

| log iρ− 2πc(ϕ)| < 1. (3.22)

Proof. We have

| log iρ− 2πc(ϕ)| ≥ | log
√
σ2 + (�ρ)2 − 2πc(ϕ)| ≥ log σ − 2π|c(ϕ)| (3.23)

and

|D(ρ)| ≤
∞∫

1

|k(ρw)|dw√
w2 − 1

≤
∑

m∈N
rL(m)

∞∫

1

e−σ√
mwdw√

w2 − 1
= f(σ) (3.24)

which implies for sufficiently large σ > 0 (in particular it is necessary that
log σ > 2π|c(ϕ)|)

|D(ρ)|
| log iρ− 2πc(ϕ)| ≤ f(σ)

log σ − 2π|c(ϕ)| < 1. (3.25)

�

Let h be an even function, analytic in a strip |�ρ| ≤ σ0, for some σ0 > σ,
which satisfies

|h(ρ)|  (1 + |�ρ|)−5−δ (3.26)

uniformly in the same strip for some δ > 0.

Remark. We restrict ourselves to a smaller space of test functions here to
simplify the presentation of our arguments. It is possible to obtain the trace
formula for any test function with uniform decay |h(ρ)|  (1 + |�ρ|)−2−δ.
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Let T > 0. Define the box

B(σ, T ) = {ρ | |�ρ| ≤ T, |�ρ| ≤ σ}.
Proposition 3.2. Denote by nj = ρ2

j , ρj ≥ 0, the eigenvalues without counting
multiplicities. The new eigenvalues which lie strictly between the nj are denoted
by λϕj = (ρϕj )2. We denote 0 > λϕ0 = (ρϕ0 )2 where ρϕ0 is purely imaginary and
�ρϕ0 > 0. Let σ > �ρϕ0 and T > 0 s.t. T /∈ {ρj}j ∪ {ρϕj }j. We have

2h(ρϕ0 ) − 2h(0) + 2
∑

0<ρϕ
j <T

h(ρϕj ) − 2
∑

0<ρj<T

h(ρj)

=
1

2πi

∫

∂B(σ,T )

h(ρ)
S′
ϕ

Sϕ
(ρ)dρ

=
1
πi

⎧
⎨

⎩

−iσ+T∫

−iσ−T
+

iσ+T∫

−iσ+T

⎫
⎬

⎭h(ρ)
S′
ϕ

Sϕ
(ρ)dρ (3.27)

Proof. By contour integration and symmetry. This is clear in view of the spec-
tral expansion

Sϕ(ρ) = − 1
ρ2

+
∞∑

j=1

r(nj)

{
1

nj − ρ2
− nj
n2
j + 1

}
− c0 tan

ϕ

2
. (3.28)

�

We may rewrite (3.27) as

2h(ρϕ0 ) − 2h(0) + 2
∑

0<ρϕ
j <T

h(ρϕj ) − 2
∑

0<ρj<T

h(ρj)

=
1
πi

−iσ+T∫

−iσ−T

h(ρ)dρ
ρ(log iρ− 2πc(ϕ))

− 1
πi

−iσ+T∫

−iσ−T
h′(ρ) log

(
1 − D(ρ)

log iρ− 2πc(ϕ)

)
dρ+ ∂B(T ) (3.29)

where

∂B(T ) =
1
πi

[
h(r) log

(
Sϕ(r)

log(ir) − 2πc(ϕ)

)]−iσ+T

−iσ−T

+
1
πi

iσ+T∫

−iσ+T

h(ρ)
S′
ϕ

Sϕ
(ρ)dρ. (3.30)

We have the following fact, analogous to Theorem 12 in [15].
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Proposition 3.3. There exists an increasing sequence {tl} ⊂ R+\({ρj}j∪{ρϕj }j)
such that liml→∞ tl = +∞ and

lim
l→∞

∂B(tl) = 0.

Since the sums and integrals in (3.29) (where we take T = tl) converge
absolutely as tl → ∞, Proposition 3.3, which we will prove in Sect. 4, gives
the general trace formula:

Theorem 3.4. Let h be as (3.26). Let σ > 0 be large enough s.t. condition
(3.22) is satisfied. We have

∞∑

j=0

{h(ρϕj ) − h(ρj)}

=
1

2πi

−iσ+∞∫

−iσ−∞

h(ρ)dρ
ρ(log iρ− 2πc(ϕ))

− 1
2πi

−iσ+∞∫

−iσ−∞
h′(ρ) log

(
1 − D(ρ)

log iρ− 2πc(ϕ)

)
dρ. (3.31)

We call the first term on the RHS of (3.31) the “smooth term”, and the
second one the “diffractive term”.

4. Proof of Proposition 3.3

We begin with the following lemma.

Lemma 4.1. There exists an increasing sequence {Tn} ⊂ R+ \ ({ρj}j ∪ {ρϕj }j)
such that limn→∞ Tn = +∞ and for −σ ≤ w ≤ 0 we have

|Sϕ(Tn + iw)| ε T
4+ε
n . (4.1)

Proof. We can choose an infinite increasing subsequence of Laplacian eigen-
values {nk(n)}n such that nk(n)+1−nk(n) = ρ2

k(n)+1−ρ2
k(n) � 1. This is because

the mean spacing between the norms {nj} is of size
√

log nj if the lattice L
is rational and of size 1 if the lattice is irrational. Recall that between two
consecutive eigenvalues nk(n) = ρ2

k(n) and nk(n)+1 = ρ2
k(n)+1 there is exactly

one new eigenvalue λϕk(n)+1 = χ2
k(n)+1 and χk(n)+1 ∈ (ρk(n), ρk(n)+1) ⊂ R+ is a

zero of the function Sϕ(ρ), whereas ρk(n), ρk(n)+1 are singularities of the same
function.

Therefore, we may choose an infinite sequence

Tn =

⎧
⎪⎨

⎪⎩

1
2 (ρk(n) + χk(n)+1), if |χk(n)+1 − ρk(n)| ≥ |χk(n) − ρk(n)+1|

1
2 (ρk(n)+1 + χk(n)+1), otherwise.

(4.2)
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with |ρk(n) − ρk(n)+1| � |ρk(n) + ρk(n)+1| � T−1
n . Note in particular that for

all ρj ∈ R+,

|ρj − Tn| ≥ 1
4
|ρk(n) − ρk(n)+1| � T−1

n . (4.3)

Let μn(w) = (Tn + iw)2, w ∈ [−σ, 0]. We have for any ε > 0

|Sϕ(Tn + iw)| 
∞∑

j=0

rL(nj)
∣∣∣∣

1
nj − μn(w)

− 1
nj − i

∣∣∣∣

 ε |i − μN (w)|
∞∑

j=0

nεj
|nj − μN (w)||nj − i| (4.4)

where we have used the bound rL(n) ε n
ε. Fix α ∈ (ε, 1). We split the sum

into a central part satisfying infw∈[−σ,0] |nj − μN (w)| < nαj and a correspond-
ing tail. For convenience we let In(nj) = infw∈[−σ,0] |nj − μn(w)|. The first
sum is estimated by

∑

In(nj)<nα
j

nεj
|nj − μn(w)||nj − i|

≤ #{j | In(nj) < nαj } max
In(nj)<nα

j

sup
w∈[−σ,0]

{
nεj

|nj − μn(w)||nj − i|
}
. (4.5)

Now if nj > T 2
n then In(nj) = nj − T 2

n . It follows

#{j | In(nj) < nαj } ≤ #{j | nj ≤ T 2
n} + #{j | nj − nαj < T 2

n}. (4.6)

Let

C(α) = #{j | nj ≤ 21/(1−α)} (4.7)

and observe that nj > 21/(1−α) implies nα−1
j < 1

2 . So nj > 21/(1−α) together
with nj(1 − nα−1

j ) < T 2
n implies

nj < 2nj(1 − nα−1
j ) < 2T 2

n . (4.8)

Hence

#{j | nj(1 − nα−1
j ) < T 2

n}
≤ #{j | nj ≤ 21/(1−α), nj(1 − nα−1

j ) < T 2
n}

+#{j | nj > 21/(1−α), nj(1 − nα−1
j ) < T 2

n}
≤ C(α) + #{j | 21/(1−α) < nj < 2T 2

n}
 T 2

n . (4.9)

It follows that

#{j | In(nj) < nαj }  T 2
n . (4.10)



Z. Rudnick and H. Ueberschär Ann. Henri Poincaré

By the same observations as above, we see that I(nj) < nαj implies nj ≤
max{21/(1−α), 2T 2

n}. Also for any j ≥ 0 we have (cf. (4.3))

|ρj − Tn| ≥ 1
4
|ρk(n) − ρk(n)+1| � T−1

n

which implies

|nj − μn(w)| = |ρ2
j − (Tn + iw)2| = |ρj − Tn − iw||ρj + Tn + iw|

≥ |ρj − Tn|(ρj + Tn)
� 1. (4.11)

Since |nj − i| ≥ 1, we have

max
In(nj)<nα

j

sup
w∈[−σ,0]

{
nεj

|nj − μn(w)||nj − i|
}

 T εn. (4.12)

The tail can be bounded as follows

∑

In(nj)≥nα
j

nεj
|nj − μn(w)||nj − i| ≤

∑

In(nj)≥nα
j

nε−αj

|nj − i|

≤
∞∑

j=0

nε−αj

|nj − i| = O(1). (4.13)

Finally note that |μn(w) − i|  T 2
n . �

Recall

∂B(Tn) =
1
πi

[
h(r) log

(
1 − D(r)

log(ir) − 2πc(ϕ)

)]−iσ+Tn

−iσ−Tn

+
1
πi

iσ+Tn∫

−iσ+Tn

h(ρ)
S′
ϕ

Sϕ
(ρ)dρ. (4.14)

We know that limn→∞B(Tn) exists (for any test function h which satisfies the
uniform bound |h(ρ)|  (1+ |�ρ|)−2−δ in the strip |�ρ| ≤ σ—the decay which
is required by Weyl’s law to ensure that the trace converges absolutely) and
we want to prove that the limit is zero for any test function which satisfies the
uniform bound

|h(ρ)|  (1 + |�ρ|)−5−δ (4.15)

in the strip |�ρ| ≤ σ.
For the first term we have, in view of |D(ρ)| ≤ f(σ) along �ρ = −σ,

∣∣∣∣log
(

1 − D(−iσ ± Tn)
log(σ ± iTn) − 2πc(ϕ)

)∣∣∣∣  1
log Tn

(4.16)

which implies that this term vanishes as n → ∞.
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For the integral, an integration by parts gives
iσ+Tn∫

−iσ+Tn

h(ρ)
S′
ϕ

Sϕ
(ρ)dρ = [h(ρ) logSϕ(ρ)]iσ+Tn

−iσ+Tn

−
iσ+Tn∫

−iσ+Tn

h′(ρ) logSϕ(ρ)dρ. (4.17)

To see that the first term vanishes as n → ∞, observe that the identity (3.16)
and the bound (3.24) imply

| logS(±iσ + Tn)| = | logS(−iσ ∓ Tn)|
≤ | log |S(±iσ + Tn)|| + | argS(±iσ + Tn)|
= log log Tn +O(1), (4.18)

where we used | argS(±iσ + Tn)|  1 as n → ∞. Similarly we see
iσ+Tn∫

−iσ+Tn

h′(ρ) logSϕ(ρ)dρ =

iσ+Tn∫

−iσ+Tn

h′(ρ) log |Sϕ(ρ)|dρ+O(T−5
n ).

We have the calculation
iσ+Tn∫

Tn

h′(ρ) log |Sϕ(ρ)|dρ

ρ→−ρ
= −

−iσ−Tn∫

−Tn

h′(−ρ) log |Sϕ(−ρ)|dρ

ρ→−ρ̄
= −

−iσ+Tn∫

Tn

h′(ρ̄) log |Sϕ(ρ̄)|dρ

=

Tn∫

−iσ+Tn

h′(ρ̄) log |Sϕ(ρ)|dρ (4.19)

where we used Sϕ(ρ̄) = Sϕ(ρ), and so the term

iσ+Tn∫

−iσ+Tn

h′(ρ) log |Sϕ(ρ)|dρ =

Tn∫

−iσ+Tn

{h′(ρ) + h′(ρ̄)} log |Sϕ(ρ)|dρ (4.20)

converges to a limit as n → ∞.
To obtain the result, we require two lemmas. The first lemma constructs

an even test function which is analytic in a strip and the real part of whose
derivative satisfies a certain polynomial lower bound in Tn on the line segment
[−iσ + Tn, Tn].
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Lemma 4.2. Choose σ0 > σ. Let

h5(ρ) =
−1

(ρ2 + σ2
0)2

.

We have for t ∈ [−σ0, 0] and for all sufficiently large n

�h′
5(Tn + it) = |�h′

5(Tn + it)| � 1
T 5
n

(4.21)

as n → ∞.

Proof. We have

h′
5(ρ) =

4ρ
(ρ2 + σ2

0)3
.

Let t ∈ [−σ0, 0]. A simple calculation gives

|�h′
5(Tn + it)| =

∣∣∣∣�
{

4(Tn + it)(T 2
n − t2 + σ2

0 − 2iTnt)3

((T 2
n − t2 + σ2

0)2 + 4T 2
nt

2)3

}∣∣∣∣

= �
{

4(Tn + it)(T 2
n − t2 + σ2

0 − 2iTnt)3

((T 2
n − t2 + σ2

0)2 + 4T 2
nt

2)3

}
� 1

T 5
n

(4.22)

as n → ∞. �

The second lemma gives a bound on log |Sϕ| averaged along the line seg-
ment [−iσ + Tn, Tn].

Lemma 4.3. We have the following bound

∣∣∣∣∣∣

Tn∫

−iσ+Tn

log |Sϕ(ρ)|dρ
∣∣∣∣∣∣
 T 5

n . (4.23)

Proof. We know there exists a constant c > 0 such that for all n and w ∈ [−σ, 0]
we have

|Sϕ(Tn + iw)| < cT 5
n .

In Lemma 4.2, we prove the existence of a test function h5 which is analytic in
the strip |�ρ| ≤ σ, satisfies the uniform bound |h5(ρ)|  (1 + |�ρ|)−4 in this
strip and in addition h5(ρ̄) = h5(ρ) and �h′

5(Tn+iw) = |�h′
5(Tn+iw)| � T−5

n(l).
We thus have
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T−5
n

∣∣∣∣∣∣

Tn∫

−iσ+Tn

log |Sϕ(ρ)|dρ
∣∣∣∣∣∣

≤ T−5
n

0∫

−σ
− log(c−1T−5

n |Sϕ(Tn + iw)|)dw +O(T−5
n log Tn)

 −
0∫

−σ
�h′

5(Tn + iw) log(c−1T−5
n |Sϕ(Tn + iw)|)dw

+O(T−5
n log Tn)

ε 1 (4.24)

because |h5(ρ)|  (1 + |�ρ|)−4 uniformly in |�ρ| ≤ σ and therefore

lim
n→∞

Tn∫

−iσ+Tn

�h′
5(ρ) log |Sϕ(ρ)|dρ

exists. �

We obtain
∣∣∣∣∣∣

iσ+Tn∫

−iσ+Tn

h′(ρ) log |Sϕ(ρ)|dρ
∣∣∣∣∣∣
 T−δ

n

in view of the identity (4.20). We also used that by Cauchy’s theorem the
analyticity and decay of h in |�ρ| ≤ σ0, where σ0 > σ, imply the analyticity
of h′ in |�ρ| ≤ σ and the uniform decay

|h′(ρ)|  (1 + |�ρ|)−5−δ

in the same strip. It follows that

lim
n→∞ ∂B(Tn) = 0

which proves Proposition 3.3.

5. Proof of Proposition 2.1

5.1.

We want to apply the trace formula in order to obtain information about
the average spacing between new eigenvalues and old eigenvalues. Let h(ρ) =
e−βρ2 , for small β > 0. Upon dividing through by β we can rewrite the l.h.s.
of the trace formula (3.31) as
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1
β

∞∑

j=0

{e−βλϕ
j − e−βnj } =

∞∑

j=0

e−βλϕ
j

1 − e−β(nj−λϕ
j )

β

=
∞∑

j=0

dje−βλϕ
j +O(β−1/2) (5.1)

where dj = nj − λϕj > 0. The last line follows from the following lemma.

Lemma 5.1. We have the bound
∞∑

j=0

dje−βλϕ
j

(
1 − 1 − e−βdj

βdj

)
 β−1/2 (5.2)

Proof. For x > 0, we have the inequality

0 < 1 − 1 − e−x

x
< x

and the bound dj  n
1/4
j for j ≥ 1 (cf. the greedy algorithm in [7], p. 7). It

follows
∞∑

j=0

dje−βλϕ
j

(
1 − 1 − e−βdj

βdj

)
< β

∞∑

j=0

d2
je

−βλϕ
j

 β

∞∑

j=1

n
1/2
j e−βλϕ

j + βe−βλϕ
0

< β

∞∑

j=0

n
1/2
j+1e

−βnj + βe−βλϕ
0 (5.3)

and the bound Nϕ(x)  x permits us to bound the sum by the following
integral:

β

∞∑

j=0

n
1/2
j+1e

−βnj  β

∞∫

0

x1/2e−βxdx  β−1/2. (5.4)

�

5.2. The Smooth Term

We have the following bound on the smooth term.

Proposition 5.2. As β ↘ 0

1
2π

∣∣∣∣∣∣

−iσ+∞∫

−iσ−∞

e−βρ2dρ
ρ(log(iρ) − 2πc(ϕ))

∣∣∣∣∣∣
 1

log 1
β

. (5.5)

Proof. Denote by Cδ the contour following a semicircle in the lower halfplane
centered at the origin of radius δ, where e2πc(ϕ) > δ > 0, starting from −δ and
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finishing at δ. By shifting the contour across the pole at ρ = −ie2πc(ϕ) to the
real line we obtain

1
2πi

−iσ+∞∫

−iσ−∞

e−βρ2dρ
ρ log(iρe−2πc(ϕ))

= eβe4πc(ϕ)
+

1
2πi

⎧
⎪⎨

⎪⎩

∫

Cδ

+
∫

R\(−δ,δ)

⎫
⎪⎬

⎪⎭
e−βρ2dρ

ρ log(iρe−2πc(ϕ))
. (5.6)

Note that the integral over the semicircle vanishes as δ → 0.
We may pick the branch of the complex logarithm in such a way that

arg(x) = π/2 if x < 0 and arg(x) = 3π/2 if x > 0. Then for real ρ �= 0

1
log(iρe−2πc(ϕ))

=
1

log(|ρ|e−2πc(ϕ)) + i(π2 + arg(ρe−2πc(ϕ)))

=
log(|ρ|e−2πc(ϕ)) − i(π2 + arg(ρe−2πc(ϕ)))

log2(|ρ|e−2πc(ϕ)) + π2/4
(5.7)

and it follows that

1
2πi

∫

R\(−δ,δ)

e−βρ2dρ
ρ log(iρe−2πc(ϕ))

= − 1
2π

∫

R\(−δ,δ)

e−βρ2
π
2 + arg(ρe−2πc(ϕ))

ρ(log2(|ρ|e−2πc(ϕ)) + π2

4 )
dρ

= −1
2

∞∫

δ

e−βρ2dρ

ρ(log2(ρe−2πc(ϕ)) + π2

4 )

= −1
2

∞∫

e−2πc(ϕ)δ

e−βe4πc(ϕ)r2dr

r(log2 r + π2

4 )

= −1
2

∞∫

−2πc(ϕ)+log δ

e−βe4πc(ϕ)e2t

dt
t2 + π2

4

→ −1
2

∞∫

−∞

e−βe4πc(ϕ)e2t

dt
t2 + π2

4

as δ → 0. (5.8)

Since
∞∫

−∞

dt
t2 + π2

4

= 2,
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we obtain in view of (5.6)

1
2πi

−iσ+∞∫

−iσ−∞

e−βρ2dρ
ρ log(iρe−2πc(ϕ))

= eβe4πc(ϕ) − 1 +
1
2

∞∫

−∞

1 − e−βe4πc(ϕ)e2t

dt

t2 + π2

4

. (5.9)

Let γ = e4πc(ϕ)β. We proceed by dividing the integral on the r.h.s. into two
integrals over the ranges (−∞, 1−ε

2 | log γ|) and [1−ε
2 | log γ|,∞) for some small

ε > 0.
We then bound the first integral as follows

1−ε
2 | log γ|∫

−∞

1 − e−γe2t

dt

t2 + π2

4

 γ

1−ε
2 | log γ|∫

−∞
e2tdt =

1
2
γε (5.10)

where we note that

|1 − e−γe2t |  γe2t,

because t < 1−ε
2 | log γ| implies γe2t < γε.

We bound the second integral by

1
2

∞∫

1−ε
2 | log γ|

|1 − e−γe2t |dt
t2 + π2

4

<

∞∫

1−ε
2 | log γ|

t−2dt =
2

(1 − ε)| log γ| . (5.11)

�

5.3. The Diffractive Term

We continue with the bound on the diffractive term.

Proposition 5.3. Let h(ρ) = e−βρ2 . As β ↘ 0
∣∣∣∣∣∣

−iσ+∞∫

−iσ−∞
h′(ρ) log

(
1 − D(ρ)

log iρ

)
dρ

∣∣∣∣∣∣
 1

log 1
β

. (5.12)

Proof. (3.22) allows us to estimate
∣∣∣∣∣∣

∞∫

−∞
h′(−iσ + s) log

(
1 − D(−iσ + s)

log i(−iσ + s) − 2πc(ϕ)

)
ds

∣∣∣∣∣∣


∞∫

−∞
|h′(−iσ + s)| |D(−iσ + s)|

| log i(−iσ + s) − 2πc(ϕ)|ds. (5.13)

We have

|h′(−iσ + s)| = 2β| − iσ + s||e−β(−iσ+s)2 | ≤ 2β(σ + |s|)eβσ2−βs2 (5.14)
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and

|D(−iσ + s)| ≤
∑

m∈N
rL(m)

∞∫

1

e−σ√
mwdw√

w2 − 1
= f(σ) (5.15)

and finally

| log(σ + is)| ≥ 1
2

log(σ2 + s2). (5.16)

We continue our estimate as follows (recall σ > max{1, e2πc(ϕ)})

∞∫

−∞
|h′(−iσ + s)| |D(−iσ + s)|

| log i(−iσ + s) − 2πc(ϕ)|ds

≤ 8βeβσ
2
f(σ)

∞∫

0

(σ + s)e−βs2ds
log(σ2 + s2) − 4πc(ϕ)

(5.17)

and the integral is bounded by

∞∫

0

(σ + s)e−βs2ds
log(σ2 + s2) − 4πc(ϕ)

<
σ

(2 log σ − 4πc(ϕ))β1/2

∞∫

0

e−w2
dw

+

∞∫

0

se−βs2ds
log(σ2 + s2) − 4πc(ϕ)

. (5.18)

Let γ = e4πc(ϕ)β and ξ = e−2πc(ϕ)σ. We bound the second integral on the
r.h.s. as follows

∞∫

0

se−βs2ds
log(σ2 + s2) − 4πc(ϕ)

=
1
β

∞∫

0

we−w2
ds

log(σ2 + w2

β ) − 4πc(ϕ)

=
1
β

∞∫

0

we−w2
ds

log(ξ2 + w2

γ )

 1
β log ξ2

γε∫

0

we−w2
dw

+
1

β(1 − 2ε) log 1
γ

∞∫

γε

we−w2
dw (5.19)
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for small ε > 0. The last line follows, since for w ≥ γε we have (assuming
γ < 1)

1 +
log(γσ2 + w2)

log 1
γ

≥ 1 +
2 logw + log(1 + γσ2/w2)

log( 1
γ )

≥ 1 − 2ε+O

(
γ1−2ε

log 1
γ

)
. (5.20)

Since
γε∫

0

we−w2
dw = O(γ2ε)

we have
∞∫

−∞
|h′(−iσ + s)| |D(−iσ + s)|

| log i(−iσ + s)|ds  1
log( 1

γ )
+O(γ2ε).

�

6. The Three-Dimensional Case

The three-dimensional case is very different. Consider the three-dimensional
flat torus T

3 = R
3/2πL3

0, where L3
0 = Z(1/ab, 0, 0) ⊕ Z(0, a, 0) ⊕ Z(0, 0, b) for

some a, b > 0. Denote by L3 the dual lattice of L3
0. The eigenvalues of the

Laplacian on T
3 are the norms of the vectors of the dual lattice L3. We denote

the set of norms of the dual lattice vectors by N 3 and the multiplicity of an
eigenvalue n ∈ N 3 is denoted by

r3(n) = #{ξ ∈ L3 : |ξ|2 = n}. (6.1)

Let ηϕj be the perturbed eigenvalues of the point scatterer on T
3 and ηj

the unperturbed eigenvalues counted without multiplicity (the norms). The
ordering is

ηϕ0 < 0 = η0 < ηϕ1 < η1 < · · · < ηϕj < ηj . (6.2)

Our main result is the following. Let dj := ηj − ηϕj > 0.

Proposition 6.1. We have as β ↘ 0

∞∑

j=0

dje−βηϕ
j =

1
2β

+O(β−3/4). (6.3)
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6.1. The Green’s Function in Three Dimensions

The free Green’s function on R
3 is given by (cf. [16], p. 842, eq. (3.4))

gη(x, x0) =
e−iρ|x−x0|

4π|x− x0| , �ρ < 0, ρ2 = η. (6.4)

We periodise to obtain the Green’s function on T
3.

Gη(x, x0) =
1
4π

∑

n∈L3

e−iρ|x−x0+n|

|x− x0 + n| (6.5)

In particular, the deficiency elements are given by

G±i(x, x0) =
1
4π

∑

n∈L3

e− |x−x0+n|√
2 cos

(
|x−x0+n|√

2

)

|x− x0 + n| (6.6)

where we note that ±i =
(

±1−i√
2

)2

.
The spectral function is given by

Sϕ3 (ρ) = lim
x→x0

(Gλ − �Gi)(x, x0) − tan
ϕ

2
=

−iρ
4π

+Dϕ
3 (ρ) (6.7)

where

Dϕ
3 (ρ) = − tan

ϕ

2
+

1
4π

√
2

+
1
4π

∑

n∈N 3

r3(n)
e−iρn − e− n√

2 cos
(
n√
2

)

n
(6.8)

where the first and second terms in (6.7) and (6.8) come from the regularisation
(where h = x− x0)

lim
h→0

e−iρ|h| − e− |h+n|√
2 cos

(
|h+n|√

2

)

4π|h|

= lim
h→0

1 − iρ|h| +O(|h|2) − (1 − |h|√
2
)(1 +O(|h|2))

4π|h|
=

−iρ
4π

+
1

4π
√

2
. (6.9)

6.2. The Trace Formula in Three Dimensions

We require the following lemma.

Lemma 6.2. For sufficiently large σ > |�ρϕ0 |, we have for �ρ = −σ
4π|Dϕ

3 (ρ)|
|ρ| < 1. (6.10)

Proof. For �ρ = −σ, it can easily be seen from (6.8) that |Dϕ
3 (ρ)| = O(1).

Furthermore |ρ| ≥ σ. So (6.10) certainly holds for sufficiently large σ. �
We have the following trace formula for a point scatterer in three dimen-

sions.
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Theorem 6.3. Let h be as above and σ > |�ρϕ0 | large enough such that (6.10)
is satisfied. Then we have

∞∑

j=0

{h(ρϕj ) − h(ρj)}

=
1
2
h(0) +

1
2πi

−iσ+∞∫

−iσ−∞
h′(ρ) log

(
1 +

4πiDϕ
3 (ρ)
ρ

)
dρ (6.11)

Proof. Following the argument in the proof of the trace formula for two dimen-
sions we obtain for σ > |�ρϕ0 | the trace formula (an analogue of Krein’s famous
trace formula)

∞∑

j=0

{h(ρϕj ) − h(ρj)} =
1

2πi

−iσ+∞∫

−iσ−∞
h′(ρ) logS3(ρ)dρ. (6.12)

In view of (6.7), we rewrite the r.h.s. as

1
2πi

−iσ+∞∫

−iσ−∞
h′(ρ) logS3(ρ)dρ

=
1

2πi

−iσ+∞∫

−iσ−∞
h′(ρ) log

(−iρ
4π

)
dρ

+
1

2πi

−iσ+∞∫

−iσ−∞
h′(ρ) log

(
1 +

4πiDϕ
3 (ρ)
ρ

)
dρ (6.13)

and the first term can be evaluated by integration by parts and shifting the
contour

1
2πi

−iσ+∞∫

−iσ−∞
h′(ρ) log

(−iρ
4π

)
dρ

=
1

2πi

−iσ+∞∫

−iσ−∞

h(ρ)dρ
ρ

=
1

2πi

∫

Cδ

h(ρ)dρ
ρ

+
1

2πi

∫

R\(−δ,δ)

h(ρ)dρ
ρ

︸ ︷︷ ︸
=0

=
1
2
h(0) (6.14)

where we recall that for some small δ the contour Cδ denotes the lower semi-
circle connecting −δ and δ on the real line. �
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6.3. Proof of Proposition 6.1

Let h(ρ) = e−βρ2 . In this case, the trace formula gives us
∞∑

j=0

{e−βηϕ
j − e−βηj }

=
1
2

− β

πi

−iσ+∞∫

−iσ−∞
ρe−βρ2 log

(
1 +

4πiDϕ
3 (ρ)
ρ

)
dρ (6.15)

and in view of (6.10) we have for �ρ = −σ the bound
∣∣∣∣log

(
1 +

4πiDϕ
3 (ρ)
ρ

)∣∣∣∣  |Dϕ
3 (ρ)|
|ρ| (6.16)

which implies

−iσ+∞∫

−iσ−∞
|ρ||e−βρ2 |

∣∣∣∣log
(

1 +
4πiDϕ

3 (ρ)
ρ

)∣∣∣∣ |dρ|


−iσ+∞∫

−iσ−∞
|e−βρ2 ||Dϕ

3 (ρ)||dρ|

 eβσ
2

∞∫

−∞
e−βt2dt = O

(
1√
β

)
(6.17)

and therefore

1
β

∞∑

j=0

{e−βηϕ
j − e−βηj } =

1
2β

+O

(
1√
β

)
. (6.18)

An analogue of the greedy algorithm is required for the proof of Propo-
sition 6.1. We state this as a lemma.

Lemma 6.4. Let dj := ηj − ηϕj . We have the bound

dj  η
1/8
j . (6.19)

Proof. Recall that each ηj is of the form q(m,n, k) = am2 + bn2 + ck2 for real
numbers a, b, c > 0 and integers m,n, k. We need to show that for each j, we
can pick m,n, k such that

|ηϕj − q(m,n, k)|  η
1/8
j

where the implied constant does not depend on our choice. Let s1 = ηϕj −am2.

Let m =
⌊√

ηϕj /a
⌋

and observe that s1 = ηϕj −am2  (ηϕj )1/2 < η
1/2
j . Now let

s2 = s1 − bn2 and choose n =
⌊√

s1/b
⌋

so that s2 = s1 − bn2  s
1/2
1 . Finally
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choose k =
⌊√

s2/c
⌋

such that s2 − ck2  s
1/2
2 . With the above choices of

m,n, k we have

|ηϕj − q(m,n, k)| = s2 − ck2  s
1/2
2  s

1/4
1  η

1/8
j .

�

The following lemma implies Proposition 6.1.

Lemma 6.5. We have the following identity
∞∑

j=0

dje−βηϕ
j =

1
β

∞∑

j=0

{e−βηϕ
j − e−βηj } +O(β−3/4) (6.20)

Proof. It is sufficient to prove the bound
∞∑

j=0

dje−βλϕ
j

(
1 − 1 − e−βdj

βdj

)
 β−3/4. (6.21)

For x > 0, we have the inequality

0 < 1 − 1 − e−x

x
< x.

It follows from the inequality and Lemma 6.4
∞∑

j=0

dje−βηϕ
j

(
1 − 1 − e−βdj

βdj

)
< β

∞∑

j=0

d2
je

−βηϕ
j

 β

∞∑

j=1

η
1/4
j e−βηϕ

j + βe−βηϕ
0

< β

∞∑

j=0

η
1/4
j+1e

−βηj + βe−βηϕ
0 (6.22)

and the bound Nϕ(x)  x3/2 permits us to estimate the sum by the following
integral:

β

∞∑

j=0

η
1/4
j+1e

−βηj  β

∞∫

0

x1/4e−βxx1/2dx  β−3/4. (6.23)

�
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